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Abstract. We study the most elementary aspects of harmonic analysis on a homogeneous
space of a deformation of the two-dimensional Euclidean group, admitting generalizations to
dimensions three and four, whose quantum parameter has the physical dimensions of length.
The homogeneous space is recognized as a new guantum plane and the action of the Euclidean
quantum group is used to determine an eigenvalue problem for the Casimir operator, which
constitutes the analogue of the Satlinger equation in the presence of such a deformation. The
solutions are given in the plane-wave and angular-momentum bases and are expressed in terms
of hypergeometric series with non-commuting parameters.

1. Introduction

Homogeneous spaces provide a unified framework for a wide class of mathematical problems
and often give a sound geometrical interpretation to many results of classical and quantum
physics. The definition of special functions, integral transformations and harmonic analysis
are significant instances in the context of pure mathematics; the classification of elementary
Hamiltonian systems by means of coadjoint orbits and their quantization according to the
Kirillov theory [1] is one of the most important applications to physical problems. The
homogeneous spaces of kinematical groups, such as the Euclidean or @aincap,
moreover, create in a natural way the fundamental wave equations of mathematical physics:
indeed these equations are determined by an invariant element of the corresponding Lie
algebra operating with a canonical action on the functions on the homogeneous space. It
appears therefore that homogeneous spaces are a major constituent of the theory of Lie
groups and their applications.

As soon as the theory of quantum groups was founded, it seemed natural to introduce
the definition of quantum homogeneous spaces. Since, in this case, one could not apply
the geometrical notion of the underlying manifold, the approach was necessarily algebraic,
based on the immersion of a suitable subalgebra of the quantized functions on the group
that realizes the functions on the homogeneous space itself. Quantum spheres were initially
defined [2]; later on a systematic generalization of the procedure and a detailed study of
possible applications to special functions was undertaken [3-9]. One could observe that the
most strenuous efforts were devoted to homogeneous spaces of compact quantum groups:
no surprise in that, since that part of the theory was best known.

As mentioned above, in applications of a physical nature a central position is occupied
by kinematical symmetries described, for instance, by the Heisenberg and the Euclidean
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or pseudo-Euclidean groups. A large number of papers have dealt with the problem of
defining theg-deformations of these groups, starting with the Heisenberg [10-12] and
Euclidean group in two dimensiong(2) [10]. The situation for the latter was clarified

in [13], where the possibility of having two different deformations I6f2) was shown.

The first one, which we denote b¥,(2), has been the most widely studied [14-23]: its
enveloping algebra has the same relations as in the classical case, while the coproducts
of the ‘translation’ generators are twisted primitive with respect to the exponential of
the ‘rotation’ generator. The second deformation, which we denoté ), obtained

by a simple contraction procedure [24-26], was later on generalized to dimensions three
[27, 28] and four [29, 30], producing, e.g., the so-cakkeBoincaé. Its main feature is that

the deformation parameter undergoes a contraction and acquires physical dimensions and
therefore represents a fundamental quantity of the theory as, for instance, a lattice spacing.
By means of an appropriate rescaling of the generators the parameter can be reabsorbed, as
was to be expected on physical grounds. We thus get a deformatifii2pfin which the
parameter does not appear explicitly; of course, the classical limit is obtained by reinserting
the parameter and by lettingz — 0, with the same procedure as witjicIfor the classical

limit in special relativity. The singular nature of this deformation has been fully clarified

in [13].

In a recent paper [31] we studied the homogeneous spacds,@. We found
two structures that had already been introduced in the literature from different points of
view and independently of the action @&,(2), namely ‘quantum planes’ [32, 33] and
‘quantum hyperboloids’ [34]. Moreover, by quantizing some Poisson homogeneous spaces,
a ‘quantum cylinder’ has also been obtained [35]. The existence of the Haar functional has
been proved folE,(2) [15, 16]: by projecting it on homogeneous spaces, the techniques of
normal harmonic analysis can be extended to the realm of quantum homogeneous spaces
and the connection with-special functions can be made explicit. From a physical point of
view, this makes conceivable the study of the solutions of explicit models along the usual
lines of wave mechanics.

In this paper we define a new quantum plane as a quantum homogeneous space of
E.(2). We then specify the canonical action Bf(2) on this space: according to the lines
developed in [31], the action will be used to define an eigenvalue equation for the Casimir
of E,(2), which constitutes a new deformed version of the free &tihger equation. Due
to the absence of the deformation parameter, the results we are going to present are of a
fundamentally different nature to those obtained by the similar analysis developed in [31]:
there, the Hahn—Exton functions and thexponentials are recovered asdeformations
of the Bessel and exponential functions. In the present case, the diagonalization of the
Casimir on the linear and angular-momentum bases yields new special functions that can be
expressed in terms of hypergeometric series with non-commuting parameters. Our reasons
for wishing to present our results are twofold. In the first place this type of harmonic
analysis can turn out to be relevant, or even fundamental, to the solution of any possible
model presenting such a quantum group symmetry. For instance, a different real form of
this group—reproducing a + 1 deformation of the Poincargroup—has been fruitfully
applied to phonon physics and has proved to be the dynamical symmetry group for such
a physical system on the lattice [36]. Physical systems with similar properties have been
studied in [37, 38]. Secondly, since the deformation£gt2) has been extended to higher
dimensions, our results certainly provide a very useful support for understanding the nature
of the special functions on those extensions.
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2. Quantum homogeneous spaces @&;(2)

In this section we define the homogeneous spaceés (&) that will be used in the analysis
that follows. In order to make the presentation sufficiently self-consistent, we find it useful
to recall in outline form the algebraic propertiesif(2), as obtained in [10], and its duality
with the quantized functions, found in [13].

Definition 2.1.The Hopf algebra generated by'® ai, a», with relations
[e a] =3:1-e")?  [e".a] = iz(e? 1)
[ar, a2l =iz ay

coalgebra operations
A(efie) — e ge?
Ala) =cog0) ®a; —Sin@) QRar, +a1 1

A(ap) = sin(@) ® a; +cog0) ®az +a, ® 1
and antipode
S(a1) = — co96) a1 — sin(d) a» S = d’

S(az) = sin(@) a; — cog0) az

will be called thealgebra of the quantized functions on E&2)d will be denoted by, (E(2)).
As explained in [10, 13]z is the dimensional deformation parameter.

Assumingz real, a compatible involution is given by
aI:al a;:az 9*29

The quantized enveloping algebta(E(2)) is generated by the unity and the three
elementspP; , P,, J satisfying

[J, Pl = (i/2)sinhzPy)  [J,P]=—iPL [P, P]=0
and such that
AP =eP@P+P@E™? AP =P,R1+10P;

Al =PRI+ Tee?

S(Py) =—P; S(P)=—-P, SU)y=—-J—iz P2
with vanishing counity and involution
J =17 Pf=P Py =P,
We finally write the duality pairing betwedw,(E (2)) and 7, (E(2)) as

(v1, 0"ajab) = 8,085,180 (v2, 0"ajab) = 8,085,081

(t,0"ajas) = 81850810
where

T =—ie 2 (] —i(z/4) Py)
and

V1 = —ie‘ZPZ/Z P Vo = —i Po.
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Observing thain\t = e"“>® r 4+ ® 1 and using the conditiotu*, a) = (u, (S(a))*), with
u € Uy(E(2)) anda € F,(E(2), we havev; = —vy, vy = —vp, TF = —t—i z v1. Moreover,
if we consider the rescaled variables;, z P, € U, (E(2)) anday/z, az/z € Fe(E(2),
we see that the deformation parameter is reabsorbed: this means that all the structures
corresponding to different values ofare isomorphic among themselves. It is nevertheless
useful to keep the deformation parameter explicit in order to perform the classical limit
(z — 0) more easily.

We recall the general definition of the two different left actions of an elerkieof the
guantized enveloping algebra on a quantized functipmamely

(V) f=Gd®Y)oAf =) fu (Y. fi2)
o
MY f =X @id)o Af =) (S(Y), fa) f-
)

For later use (and with obvious notation) we also recall that these actions have the following
properties:

LYZ)f =UX)2Z) f AYZ)f =rx(Y)MZ) f
and

(Y)fg=) XY f L(¥e)g  AX)fg=Y A¥e)f A(Ya)s.
Y) ¥)

Following the theory developed in [39], based on the ‘infinitesimal invariance’ of the
functions on the quantum homogeneous spaces, we can use the approach of [31] to look
for quantum homogeneous spacesfpf2).

Lemma 2.2Define X = J —i(z/4) P1. The linear span ok constitutes & o S)-invariant
two-sided coideal off,(E(2)), twisted primitive with respect to&/2/2,

Proof. By a straightforward calculation we have
*0§5(X)=-X and AX =eP2g x 1 X @ &h/?,

Proposition 2.3.Let x =a; —iay, X = a; +iay. Thenx* = x and
[x,X] = —z (x + X).
Moreoverx andx generate the invariant subalgebra and left coideal
By ={f € Fu(E(2)|L(X) f =0}
They thus define a quantum homogeneous space whose coaction reads
Sx=e'@x+x®1 5i=d'@i+i®L
Proof. First we observe thaX = ie*2/2¢, so that the kernel of(X) is the same as that
of £(t). Letus write f =", fimn € "?al'a}. Then

L) f =Y fumn (€€ e U(T)ay'ay + (U(r) €")a} ap)

I,m,n
; —il0 _m _n
=—li E I fimn € af'ay
I,m,n

that vanishes fof = 0. Then the spac8y is generated by; anda;, or by x andx. The
relationships betweern andx as well as the coactions follow immediately. d
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Proposition 2.4.The actionir on F,(E(2)) has the following form:
AP e alah = —imeal  ay +iz/2)"
A(Po) eﬁimai"a’zl =—in eﬁimaTag_l
A() e_”eaTag —je ((il ai + mai"il(az — %i(m — 1/2)z))(a2 +iz/2)"
+ (i/2z)a1"+1((a2 +iz/2)" — (az — i32/2)")) .
In particular
A(X) e_”eafag =je ((il ai' +m a'l"fl(az - imz/Z))(az +iz/2)"
+ (i/22)ay ™ ((az +12/2)" — (a2 —32/2)")) .

Proof. This follows by a straightforward calculation. O

3. Free£-Schrodinger equation

The natural¢-analogue of the free Sdbdinger equation is obtained by considering the
canonical action of the Casimir &f,(E(2)) on the homogeneous spaces determined so far.
The Casimir ofif,(E(2)) reads

C=A4HYH™ = (4/z?) sintf((z/2) Py) + P?
where the elements
1 1 1 1
HY = (& -1 - Jieh/?p H =_(1-e*2)+ Jie<h/2p
2Z( ) 2' (! 2z( ) + 2' 1

are the deformations of the holomorphic and antiholomorphic oper&g&=+iP;/2. The
coproducts ofH* are

AH'" =1 H" + Ht @ & AH =eP@H +H ®1
Thus thez-deformed free Sclidinger equation reads
AMHYH)YY =E . (3.1)

In the remaining part of this section we shall diagonalize the operator on the right-hand
side of (3.1) in the ‘plane-wave’ and ‘angular-momentum’ bases, in analogy with the usual
procedure carried on in quantum mechanics. For later convenience we recall the definition
of the Pochammer symbol

n—1
(@n =] J@+k)
k=0
and of the classical generalized hypergeometric series

a - a o (a)e---(a)e
F, sl=) e
[bl ceo by §i| ;E! (b1)e -+ (by)e ¢

We also find it useful to introduce the variables

X =x/z X =—-x/z.
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3.1. The plane-wave states

In analogy with the standard procedure of diagonalization of thed@ahger operator on
the plane-wave basis, it is natural to consider and H~ as the appropriate candidates to
be diagonalized. We first determine the action of these operators.

Lemma 3.2.The following relations hold:

WHYY Ba =0 A(HY) () = —g (Ont

MHD) (L= x), = —g A= X)u/(L= x)

and
MHD)(0n =0 MH) (u =" (/)
MH) =05 =" (A= D
Proof. This follows by direct computation. O

These relations suggest looking for plane-wave states of the form

Ve = Y Bun GOn (L= 3O

where then,,, are to be found from the equation

MHO Y., =h"y

hth— htn— "

Proposition 3.3.The coefficients,,,, are determined up to a multiplicative constant and are
given by the following expression:

1 +\m —\n
hmn = 0 (_Zh ) (Zh ) .
m:n:
Proof. Indeed, using lemma 3.2,

WHY) GOm (L= X = —%(mm_l(l —

MHT) (O — 3)y = Zoo,n(l — i

so that
1
MHO o= =~ 3 0+ D i1 GO (L = 0
1
MHD) e =~ D 004 D s GO L = O

m,n

We thus find the following recurrence relations:
1 n 1 _
_7(m + 1)hm+1,n =h hmn *(}’l + 1)hm,n+l =h hmn
z z

whose solution is straightforward and yields the result. O
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The Casimir is obviously diagonal on these states:
AO Y, =4MHYH )Y, =4h"h™ ¢

hth—
can be expressed in the form of a hypergeometric series.

hth— "

Finally, the eigenfunctiongr
Indeed

hth—

X\ (—zhty" >\ (zh™)" }
wﬁh,:r;T(x)m; A=
=1 +zh") XA —zh)* !

and, according to the general definition, this can be written as
X 1-x _
Wm:lFO[_;—ZhJF] 1Fo[ i zh }

In the classical limitz — O we recover the usual plane waves @xpﬁx — h*i)), as
expected.

3.2. The angular-momentum states

We now consider the diagonalization of (3.1) on a basis which realizes the deformed

counterpart of the angular-momentum states. The duality structure and the requirement
of a correct behaviour under the involution indicate that such a result can be obtained by
diagonalizing the operator

J =eP2(] —i(z/4 Py).
Observing that7* = 7, let us therefore discuss equation (3.1), together with
MDY =ry.
We now prove the following two lemmas.

Lemma 3.4.The polynomials(x), and (j), are eigenstates df() with eigenvalues—n
andn, respectively.

Proof. We prove the lemma by induction. Far= 1 we have

MDD =—x M) =X
asA(J)ar =iaz, andi(J)az = —iaz. Assuming that

M) On-1=—0 = D(X)n-1 MI)Xn-1= (=D (n-1
we find

M) OO =MD GOn-1(x +n —1) = =n (x)n

where we have usedJ = e 2@ 7+ J ® 1 andir(e™*2) x = x + 1. In similar way
we get

MI) OO =1 (On
observing that (e *f2) ¥ = 3 + 1. d

Lemma 3.5The polynomialp, = (), (1 — x), = (x). (1 — x), is invariant under the
action of A(J), i.e. A(J) p, = 0. Moreover it can be written ag, = p(p + 2)(p +
6)---(p+n(n—1)), wherep = x (1 — x).
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Proof. We start by proving the second part of the lemma. In this case we again adopt the
induction technique. We have; = p andp, = ()1 (X +n =1 QA — x)u_1(m — ).

Since the relationx — x)P(x) = P(x + 1)(x — ) holds for any polynomialP(y), it is
straightforward to commutéy +n — 1) with (1 — x),_1. As a result of the commutation

we find

Pn = (On-1(1 = X)n-2(x A= x) +n( —1) = pp_1(p +n(n — 1))

and thenp, = p(p +2)(p +6) - - (p + n(n — 1)).

The proof of the first statement is a direct consequence of the previous result. Indeed
from () +o)l— x —a) = (x + o) (1 — } — «a), wherea is any number, we find
OOn (L= x)n = On (L — X)u- Moreover

M) pu = MT) pa-1(p +n(n = 1)) = A(T) pa-1r(€ ) (p +n(n — 1)),

Due to the fact thab.(J) p = 0, we see thak(7) p,—1 = 0 impliesA(J) p, = 0. The
lemma is therefore proved. O

We shall write the eigenstates of7) as
l/frzchpe ()_()r 1»//—rZZCK—rIO[(X)’”
¢ ¢
As a matter of fact, by a simple computation, we find

MDYy =1y, MDD Y- = -1y,

The coefficientse’ of the expansion will be determined by using (3.1). It will appear
that the choice of the polynomiajs, proves to be essential when we try to diagonalize the
CasimirC = 4 HTH~. For this purpose we find it very useful to introduce an auxiliary
element, which, according to the following proposition, yields a very simple form for the
relations inif, (E(2)).

Proposition 3.6.Let U* = (1/2) (1 + €72 xiz eFf/2p)) andH* = U*H*. Then

[T’ =" [T H]=-H  [H' H]=0.
MoreoverC = H*H~ = HTH (1 + z2HVH").
Proof. This follows by direct computation. O

We will now discuss the action ¢f(H+) andA(H ™) on v, andy_,.. On the one hand,
proposition 3.6 and the involution propernty{*)* = H~ permit us to write

)“(H+) Ip:ﬁ:r =€ w:l:rJrl )‘(H_) w:l:r =€ w:i:rfl . (37)

On the other hand, the left-hand side of (3.7) can be computed directly.
Indeed:

Lemma 3.8.The following relations hold:

MO = =5 Y[, @)+ e DE+ D+ 7+ D] o (0
4

1
MHOWr === 3 5+ D) pe (Orsn,
4

Proof. A straightforward calculation shows that
MUY X" =x"(x + D" AMUDX"x" =X —D"x"
Using this result it is not difficult to complete the proof. |
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Equations (3.7) and lemma 3.8 imply the recurrence relations

1
€l =[5, €+ + T+ DE+NE+r + D]

S —%czjl L+ 1.

It is easily verified that thé coefficients

2\¢

= ko

solve the two recurrence relations, provided thés related toee by
le|> = €€ = k(1 + z%k).

Recalling thatC = H*H~ = H*H-(1+z?HtH™), we get
MHYHO) Y, =k,

We have therefore proved the following proposition.

Proposition 3.9.The states that diagonali2z€.7) andA(H+tH ™) are

Yo=Y oGO Y=Y el oGO
¢=0 =0

where

. (k2" , (kz?)*
¢!, = (—kz/&) ¢ = (—kz/e) .
Qe+ O +r)
Some final remarks are in order. We also observe that in the angular-momentum basis
the statesy., can be written, aslassical hypergeometric series with non-commutative

coefficients. Indeed, by making the form pf explicit we get

00 k 2\¢
bor = ke e 0= 000,
;o 1— ,
=2F1[Xr+1 X }( k/e)*(")

and

_ X 1—x (X)r
Iﬂr—2F1|: i1 :|(k/) .

We want to stress that the situation is very different from the deformation treated in [31].
The quantumdeformation is expressed through the non-commutative varigplasd x

that appear in the coefficients anda, of ,F;. The coefficientb; and the hypergeometric
variable¢ are, instead, numbers. The classical limit> O of the hypergeometrigF; again

yield the usual Bessel functions in the commutative variahie This is not surprising. It

is nevertheless rather peculiar that this result is due to a kind of confluence phenomenon
caused by the non-commutativity of the arguments.
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