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Abstract. We study the most elementary aspects of harmonic analysis on a homogeneous
space of a deformation of the two-dimensional Euclidean group, admitting generalizations to
dimensions three and four, whose quantum parameter has the physical dimensions of length.
The homogeneous space is recognized as a new quantum plane and the action of the Euclidean
quantum group is used to determine an eigenvalue problem for the Casimir operator, which
constitutes the analogue of the Schrödinger equation in the presence of such a deformation. The
solutions are given in the plane-wave and angular-momentum bases and are expressed in terms
of hypergeometric series with non-commuting parameters.

1. Introduction

Homogeneous spaces provide a unified framework for a wide class of mathematical problems
and often give a sound geometrical interpretation to many results of classical and quantum
physics. The definition of special functions, integral transformations and harmonic analysis
are significant instances in the context of pure mathematics; the classification of elementary
Hamiltonian systems by means of coadjoint orbits and their quantization according to the
Kirillov theory [1] is one of the most important applications to physical problems. The
homogeneous spaces of kinematical groups, such as the Euclidean or Poincaré group,
moreover, create in a natural way the fundamental wave equations of mathematical physics:
indeed these equations are determined by an invariant element of the corresponding Lie
algebra operating with a canonical action on the functions on the homogeneous space. It
appears therefore that homogeneous spaces are a major constituent of the theory of Lie
groups and their applications.

As soon as the theory of quantum groups was founded, it seemed natural to introduce
the definition of quantum homogeneous spaces. Since, in this case, one could not apply
the geometrical notion of the underlying manifold, the approach was necessarily algebraic,
based on the immersion of a suitable subalgebra of the quantized functions on the group
that realizes the functions on the homogeneous space itself. Quantum spheres were initially
defined [2]; later on a systematic generalization of the procedure and a detailed study of
possible applications to special functions was undertaken [3–9]. One could observe that the
most strenuous efforts were devoted to homogeneous spaces of compact quantum groups:
no surprise in that, since that part of the theory was best known.

As mentioned above, in applications of a physical nature a central position is occupied
by kinematical symmetries described, for instance, by the Heisenberg and the Euclidean

0305-4470/96/247973+10$19.50c© 1996 IOP Publishing Ltd 7973



7974 F Bonechi et al

or pseudo-Euclidean groups. A large number of papers have dealt with the problem of
defining theq-deformations of these groups, starting with the Heisenberg [10–12] and
Euclidean group in two dimensions,E(2) [10]. The situation for the latter was clarified
in [13], where the possibility of having two different deformations ofE(2) was shown.
The first one, which we denote byEq(2), has been the most widely studied [14–23]: its
enveloping algebra has the same relations as in the classical case, while the coproducts
of the ‘translation’ generators are twisted primitive with respect to the exponential of
the ‘rotation’ generator. The second deformation, which we denote byE`(2), obtained
by a simple contraction procedure [24–26], was later on generalized to dimensions three
[27, 28] and four [29, 30], producing, e.g., the so-calledκ-Poincaŕe. Its main feature is that
the deformation parameter undergoes a contraction and acquires physical dimensions and
therefore represents a fundamental quantity of the theory as, for instance, a lattice spacing.
By means of an appropriate rescaling of the generators the parameter can be reabsorbed, as
was to be expected on physical grounds. We thus get a deformation ofE(2) in which the
parameter does not appear explicitly; of course, the classical limit is obtained by reinserting
the parameterz and by lettingz → 0, with the same procedure as with 1/c for the classical
limit in special relativity. The singular nature of this deformation has been fully clarified
in [13].

In a recent paper [31] we studied the homogeneous spaces ofEq(2). We found
two structures that had already been introduced in the literature from different points of
view and independently of the action ofEq(2), namely ‘quantum planes’ [32, 33] and
‘quantum hyperboloids’ [34]. Moreover, by quantizing some Poisson homogeneous spaces,
a ‘quantum cylinder’ has also been obtained [35]. The existence of the Haar functional has
been proved forEq(2) [15, 16]: by projecting it on homogeneous spaces, the techniques of
normal harmonic analysis can be extended to the realm of quantum homogeneous spaces
and the connection withq-special functions can be made explicit. From a physical point of
view, this makes conceivable the study of the solutions of explicit models along the usual
lines of wave mechanics.

In this paper we define a new quantum plane as a quantum homogeneous space of
E`(2). We then specify the canonical action ofE`(2) on this space: according to the lines
developed in [31], the action will be used to define an eigenvalue equation for the Casimir
of E`(2), which constitutes a new deformed version of the free Schrödinger equation. Due
to the absence of the deformation parameter, the results we are going to present are of a
fundamentally different nature to those obtained by the similar analysis developed in [31]:
there, the Hahn–Exton functions and theq-exponentials are recovered asq-deformations
of the Bessel and exponential functions. In the present case, the diagonalization of the
Casimir on the linear and angular-momentum bases yields new special functions that can be
expressed in terms of hypergeometric series with non-commuting parameters. Our reasons
for wishing to present our results are twofold. In the first place this type of harmonic
analysis can turn out to be relevant, or even fundamental, to the solution of any possible
model presenting such a quantum group symmetry. For instance, a different real form of
this group—reproducing a 1+ 1 deformation of the Poincaré group—has been fruitfully
applied to phonon physics and has proved to be the dynamical symmetry group for such
a physical system on the lattice [36]. Physical systems with similar properties have been
studied in [37, 38]. Secondly, since the deformation ofE`(2) has been extended to higher
dimensions, our results certainly provide a very useful support for understanding the nature
of the special functions on those extensions.
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2. Quantum homogeneous spaces ofE`(2)

In this section we define the homogeneous spaces ofE`(2) that will be used in the analysis
that follows. In order to make the presentation sufficiently self-consistent, we find it useful
to recall in outline form the algebraic properties ofE`(2), as obtained in [10], and its duality
with the quantized functions, found in [13].

Definition 2.1.The Hopf algebra generated by e−iθ , a1, a2, with relations

[e−iθ , a1] = 1
2z(1 − e−iθ )2 [e−iθ , a2] = 1

2iz(e−2iθ − 1)

[a1, a2] = i z a1

coalgebra operations

1(e−iθ ) = e−iθ ⊗ e−iθ

1(a1) = cos(θ)⊗ a1 − sin(θ)⊗ a2 + a1 ⊗ 1

1(a2) = sin(θ)⊗ a1 + cos(θ)⊗ a2 + a2 ⊗ 1

and antipode

S(a1) = − cos(θ) a1 − sin(θ) a2 S(e−iθ ) = eiθ

S(a2) = sin(θ) a1 − cos(θ) a2

will be called thealgebra of the quantized functions on E(2)and will be denoted byF`(E(2)).
As explained in [10, 13],z is the dimensional deformation parameter.

Assumingz real, a compatible involution is given by

a∗
1 = a1 a∗

2 = a2 θ∗ = θ.

The quantized enveloping algebraU`(E(2)) is generated by the unity and the three
elementsP1 , P2 , J satisfying

[J, P1] = (i/z) sinh(zP2) [J, P2] = −i P1 [P1, P2] = 0

and such that

1P1 = e−zP2/2 ⊗ P1 + P1 ⊗ ezP2/2 1P2 = P2 ⊗ 1 + 1 ⊗ P2

1J = e−zP2/2 ⊗ J + J ⊗ ezP2/2

S(P2) = −P2 S(P1) = −P1 S(J ) = −J − i z P1/2

with vanishing counity and involution

J ∗ = J P ∗
1 = P1 P ∗

2 = P2.

We finally write the duality pairing betweenU`(E(2)) andF`(E(2)) as

〈ν1, θ
ras1a

t
2〉 = δr,0δs,1δt,0 〈ν2, θ

ras1a
t
2〉 = δr,0δs,0δt,1

〈τ, θras1at2〉 = δr,1δs,0δt,0

where

τ = −i e−zP2/2 (J − i(z/4) P1)

and

ν1 = −i e−zP2/2P1 ν2 = −i P2.
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Observing that1τ = e−iz ν2 ⊗τ +τ ⊗1 and using the condition〈u∗, a〉 = 〈u, (S(a))∗〉, with
u ∈ U`(E(2)) anda ∈ F`(E(2)), we haveν∗

1 = −ν1, ν∗
2 = −ν2, τ ∗ = −τ−i z ν1. Moreover,

if we consider the rescaled variablesz P1 , z P2 ∈ U`(E(2)) and a1/z, a2/z ∈ F`(E(2)),
we see that the deformation parameter is reabsorbed: this means that all the structures
corresponding to different values ofz are isomorphic among themselves. It is nevertheless
useful to keep the deformation parameter explicit in order to perform the classical limit
(z → 0) more easily.

We recall the general definition of the two different left actions of an elementY of the
quantized enveloping algebra on a quantized functionf , namely

`(Y )f = (id ⊗ Y ) ◦1f =
∑
(f )

f(1) 〈Y, f(2)〉

λ(Y )f = (S(Y )⊗ id) ◦1f =
∑
(f )

〈S(Y ), f(1)〉 f(2).

For later use (and with obvious notation) we also recall that these actions have the following
properties:

`(YZ)f = `(Y )`(Z) f λ(YZ)f = λ(Y )λ(Z) f

and

`(Y )fg =
∑
(Y )

`(Y(1))f `(Y(2))g λ(Y )fg =
∑
(Y )

λ(Y(2))f λ(Y(1))g.

Following the theory developed in [39], based on the ‘infinitesimal invariance’ of the
functions on the quantum homogeneous spaces, we can use the approach of [31] to look
for quantum homogeneous spaces ofE`(2).

Lemma 2.2.Define X = J − i(z/4) P1. The linear span ofX constitutes a(∗◦S)-invariant
two-sided coideal ofU`(E(2)), twisted primitive with respect to e−zP2/2.

Proof. By a straightforward calculation we have

∗ ◦ S (X) = −X and 1X = e−zP2/2 ⊗X +X ⊗ ezP2/2.

�
Proposition 2.3.Let x = a1 − i a2, x̄ = a1 + i a2. Thenx∗ = x̄ and

[x, x̄] = −z (x + x̄).

Moreoverx and x̄ generate the invariant subalgebra and left coideal

BX = {f ∈ F`(E(2))|`(X) f = 0}.
They thus define a quantum homogeneous space whose coaction reads

δx = e−iθ ⊗ x + x ⊗ 1 δx̄ = eiθ ⊗ x̄ + x̄ ⊗ 1.

Proof. First we observe thatX = i ezP2/2 τ , so that the kernel of̀(X) is the same as that
of `(τ ). Let us writef = ∑

l,m,n flmn e−ilθ am1 a
n
2. Then

`(τ ) f =
∑
l,m,n

flmn
(
`(e−iz ν2) e−ilθ `(τ )am1 a

n
2 + (`(τ ) e−ilθ )am1 a

n
2

)
= −i

∑
l,m,n

l flmn e−ilθ am1 a
n
2

that vanishes forl = 0. Then the spaceBX is generated bya1 anda2 or by x and x̄. The
relationships betweenx and x̄ as well as the coactions follow immediately. �
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Proposition 2.4.The actionλ on F`(E(2)) has the following form:

λ(P1) e−ilθ am1 a
n
2 = −im e−ilθ am−1

1 (a2 + i z/2)n

λ(P2) e−ilθ am1 a
n
2 = −i n e−ilθ am1 a

n−1
2

λ(J ) e−ilθ am1 a
n
2 = i e−ilθ

((
il am1 +mam−1

1 (a2 − 1
2i(m− 1/2)z)

)
(a2 + i z/2)n

+ (i/2z)am+1
1

(
(a2 + i z/2)n − (a2 − i 3z/2)n

))
.

In particular

λ(X) e−ilθ am1 a
n
2 = i e−ilθ

((
il am1 +mam−1

1 (a2 − imz/2)
)
(a2 + i z/2)n

+ (i/2z)am+1
1

(
(a2 + i z/2)n − (a2 − i 3z/2)n

))
.

Proof. This follows by a straightforward calculation. �

3. Free`-Schrödinger equation

The natural`-analogue of the free Schrödinger equation is obtained by considering the
canonical action of the Casimir ofU`(E(2)) on the homogeneous spaces determined so far.

The Casimir ofU`(E(2)) reads

C = 4H+H− = (4/z2) sinh2((z/2) P2)+ P 2
1

where the elements

H+ = 1

2z
(ezP2 − 1)− 1

2
i ezP2/2P1 H− = 1

2z
(1 − e−zP2)+ 1

2
i e−zP2/2P1

are the deformations of the holomorphic and antiholomorphic operatorsP2/2∓ iP1/2. The
coproducts ofH± are

1H+ = 1 ⊗H+ +H+ ⊗ ezP2 1H− = e−zP2 ⊗H− +H− ⊗ 1.

Thus thez-deformed free Schrödinger equation reads

4λ(H+H−) ψ = E ψ . (3.1)

In the remaining part of this section we shall diagonalize the operator on the right-hand
side of (3.1) in the ‘plane-wave’ and ‘angular-momentum’ bases, in analogy with the usual
procedure carried on in quantum mechanics. For later convenience we recall the definition
of the Pochammer symbol

(a)n =
n−1∏
k=0

(a + k)

and of the classical generalized hypergeometric series

rFs

[
a1 · · · ar

b1 · · · bs
; ζ

]
=

∞∑
`=0

(a1)` · · · (ar)`
`! (b1)` · · · (bs)` ζ

` .

We also find it useful to introduce the variables

χ = x/z χ̄ = −x̄/z.
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3.1. The plane-wave states

In analogy with the standard procedure of diagonalization of the Schrödinger operator on
the plane-wave basis, it is natural to considerH+ andH− as the appropriate candidates to
be diagonalized. We first determine the action of these operators.

Lemma 3.2.The following relations hold:

λ(H+) (χ̄)n = 0 λ(H+) (χ)n = −n
z
(χ)n−1

λ(H+) (1 − χ)n = −n
z
(1 − χ)n/(1 − χ)

and

λ(H−) (χ)n = 0 λ(H−) (χ̄)n = n

z
(χ̄)n/(χ̄)

λ(H−) (1 − χ̄)n = n

z
(1 − χ̄)n−1.

Proof. This follows by direct computation. �

These relations suggest looking for plane-wave states of the form

ψh+h− =
∑
m,n

hmn (χ)n (1 − χ̄)m

where thehmn are to be found from the equation

λ(H+) ψ
h+h− = h+ ψ

h+h− .

Proposition 3.3.The coefficientshmn are determined up to a multiplicative constant and are
given by the following expression:

hmn = 1

m!n!
(−zh+)m (zh−)n.

Proof. Indeed, using lemma 3.2,

λ(H+) (χ)m(1 − χ̄)n = −m
z
(χ)m−1(1 − χ̄)n

λ(H−) (χ)m(1 − χ̄)n = n

z
(χ)m(1 − χ̄)n−1

so that

λ(H+) ψ
h+h− = −1

z

∑
m,n

(m+ 1) hm+1,n(χ)m(1 − χ̄)n

λ(H−) ψ
h+h− = 1

z

∑
m,n

(n+ 1) hm,n+1(χ)m(1 − χ̄)n.

We thus find the following recurrence relations:

−1

z
(m+ 1)hm+1,n = h+ hmn

1

z
(n+ 1)hm,n+1 = h− hmn

whose solution is straightforward and yields the result. �
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The Casimir is obviously diagonal on these states:

λ(C) ψ
h+h− = 4λ(H+H−) ψ

h+h− = 4h+h− ψ
h+h− .

Finally, the eigenfunctionsψ
h+h− can be expressed in the form of a hypergeometric series.

Indeed

ψ
h+h− =

∞∑
m=0

(−zh+)m

m!
(χ)m

∞∑
n=0

(zh−)n

n!
(1 − χ̄)n

= (1 + zh+)−χ (1 − zh−)χ̄−1

and, according to the general definition, this can be written as

ψ
h+h− = 1F0

[
χ

− ; −z h+
]

1F0

[
1 − χ̄

− ; z h−
]
.

In the classical limitz → 0 we recover the usual plane waves exp
(
i (h+x − h−x̄)

)
, as

expected.

3.2. The angular-momentum states

We now consider the diagonalization of (3.1) on a basis which realizes the deformed
counterpart of the angular-momentum states. The duality structure and the requirement
of a correct behaviour under the involution indicate that such a result can be obtained by
diagonalizing the operator

J = e−zP2/2(J − i(z/4) P1).

Observing thatJ ∗ = J , let us therefore discuss equation (3.1), together with

λ(J ) ψ = r ψ.

We now prove the following two lemmas.

Lemma 3.4.The polynomials(χ)n and (χ̄)n are eigenstates ofλ(J ) with eigenvalues−n
andn, respectively.

Proof. We prove the lemma by induction. Forn = 1 we have

λ(J )(χ) = −χ λ(J )(χ̄) = χ̄

asλ(J )a1 = i a2, andλ(J )a2 = −i a1. Assuming that

λ(J )(χ)n−1 = −(n− 1)(χ)n−1 λ(J )(χ̄)n−1 = (n− 1)(χ̄)n−1

we find

λ(J )(χ)n = λ(J )(χ)n−1(χ + n− 1) = −n (χ)n
where we have used1J = e−zP2 ⊗ J + J ⊗ 1 andλ(e−zP2) χ = χ + 1. In similar way
we get

λ(J )(χ̄)n = n (χ̄)n

observing thatλ(e−zP2) χ̄ = χ̄ + 1. �
Lemma 3.5.The polynomialρn = (χ̄)n (1 − χ)n = (χ)n (1 − χ̄)n is invariant under the
action of λ(J ), i.e. λ(J ) ρn = 0. Moreover it can be written asρn = ρ(ρ + 2)(ρ +
6) · · · (ρ + n(n− 1)), whereρ = χ̄(1 − χ).
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Proof. We start by proving the second part of the lemma. In this case we again adopt the
induction technique. We haveρ1 = ρ and ρn = (χ̄)n−1 (χ̄ + n − 1) (1 − χ)n−1 (n − χ).
Since the relation(χ − χ̄)P (χ) = P(χ + 1)(χ − χ̄) holds for any polynomialP(χ), it is
straightforward to commute(χ̄ + n− 1) with (1 − χ)n−1. As a result of the commutation
we find

ρn = (χ̄)n−1 (1 − χ)n−1(χ̄ (1 − χ)+ n(n− 1)) = ρn−1(ρ + n(n− 1))

and thenρn = ρ(ρ + 2)(ρ + 6) · · · (ρ + n(n− 1)).
The proof of the first statement is a direct consequence of the previous result. Indeed

from (χ̄ + α) (1 − χ − α) = (χ + α) (1 − χ̄ − α), where α is any number, we find
(χ̄)n (1 − χ)n = (χ)n (1 − χ̄)n. Moreover

λ(J ) ρn = λ(J ) ρn−1(ρ + n(n− 1)) = λ(J )ρn−1λ(e
−zP2)(ρ + n(n− 1)).

Due to the fact thatλ(J ) ρ = 0, we see thatλ(J ) ρn−1 = 0 implies λ(J ) ρn = 0. The
lemma is therefore proved. �

We shall write the eigenstates ofλ(J ) as

ψr =
∑
`

c`r ρ` (χ̄)r ψ−r =
∑
`

c`−r ρ` (χ)r .

As a matter of fact, by a simple computation, we find

λ(J ) ψr = r ψr λ(J ) ψ−r = −r ψ−r .

The coefficientsc`r of the expansion will be determined by using (3.1). It will appear
that the choice of the polynomialsρn proves to be essential when we try to diagonalize the
Casimir C = 4H+H−. For this purpose we find it very useful to introduce an auxiliary
element, which, according to the following proposition, yields a very simple form for the
relations inU`(E(2)).
Proposition 3.6.Let U± = (1/2) (1 + e∓zP2 ∓ iz e∓zP2/2P1) andH± = U±H±. Then

[J ,H+] = H+ [J ,H−] = −H− [H+,H−] = 0.

MoreoverC̃ = H+H− = H+H−(1 + z2H+H−).

Proof. This follows by direct computation. �
We will now discuss the action ofλ(H+) andλ(H−) onψr andψ−r . On the one hand,

proposition 3.6 and the involution property(H+)∗ = H− permit us to write

λ(H+) ψ±r = ε ψ±r+1 λ(H−) ψ±r = ε̄ ψ±r−1 . (3.7)

On the other hand, the left-hand side of (3.7) can be computed directly.
Indeed:

Lemma 3.8.The following relations hold:

λ(H+)ψ−r = −1

z

∑
`

[
c`−r (`+ r)+ c`+1

−r (`+ 1)(`+ r)(`+ r + 1)
]
ρ` (χ)r−1

λ(H−)ψ−r = −1

z

∑
`

c`+1
−r (`+ 1) ρ` (χ)r+1.

Proof. A straightforward calculation shows that

λ(U+)χnχ̄m = χn(χ̄ + 1)m λ(U−)χ̄mχn = (χ̄ − 1)mχn.

Using this result it is not difficult to complete the proof. �
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Equations (3.7) and lemma 3.8 imply the recurrence relations

ε c`−r+1 = −1

z

[
c`−r (`+ r)+ c`+1

−r (`+ 1)(`+ r)(`+ r + 1)
]

ε̄ c`−r−1 = −1

z
c`+1
−r (`+ 1).

It is easily verified that the coefficients

c`−r = (−kz/ε̄)r (kz2)`

`!(`+ r)!
solve the two recurrence relations, provided thatk is related toεε̄ by

|ε|2 = εε̄ = k(1 + z2 k).

Recalling thatC̃ = H+H− = H+H−(1 + z2H+H−), we get

λ(H+H−) ψ−r = k ψ−r .

We have therefore proved the following proposition.

Proposition 3.9.The states that diagonalizeλ(J ) andλ(H+H−) are

ψ−r =
∞∑
`=0

c`−r ρ` (χ)r ψr =
∞∑
`=0

c`r ρ` (χ̄)r

where

c`−r = (−kz/ε̄)r (kz2)`

`!(`+ r)!
c`r = (−kz/ε)r (kz2)`

`!(`+ r)!
.

Some final remarks are in order. We also observe that in the angular-momentum basis
the statesψ±r can be written, asclassical hypergeometric series with non-commutative
coefficients. Indeed, by making the form ofρ` explicit we get

ψ−r =
∞∑
`=0

(−kz/ε̄)r (kz2)`

`!(`+ r)!
(χ̄)` (1 − χ)` (χ)r

= 2F1

[
χ̄ 1 − χ

r + 1
; kz2

]
(−kz/ε̄)r (χ)r

r!

and

ψr = 2F1

[
χ̄ 1 − χ

r + 1
; kz2

]
(−kz/ε)r (χ̄)r

r!
.

We want to stress that the situation is very different from the deformation treated in [31].
The quantumdeformation is expressed through the non-commutative variablesχ and χ̄
that appear in the coefficientsa1 anda2 of 2F1. The coefficientb1 and the hypergeometric
variableζ are, instead, numbers. The classical limitz → 0 of the hypergeometric2F1 again
yield the usual Bessel functions in the commutative variablex̄x. This is not surprising. It
is nevertheless rather peculiar that this result is due to a kind of confluence phenomenon
caused by the non-commutativity of the arguments.
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